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ABSTRACT 
We report an experimental implementation of adaptive learning 
functionality in a self-paced Microsoft MOOC (massive open 
online course) on edX. In a personalized adaptive system, the 
learner’s progress toward clearly defined goals is continually 
assessed, the assessment occurs when a student is ready to 
demonstrate competency, and supporting materials are tailored to 
the needs of each learner. Despite the promise of adaptive 
personalized learning, there is a lack of evidence-based 
instructional design, transparency in many of the models and 
algorithms used to provide adaptive technology or a framework 
for rapid experimentation with different models. ALOSI 
(Adaptive Learning Open Source Initiative) provides open source 
adaptive learning technology and a common framework to 
measure learning gains and learner behavior. This study explored 
the effects of two different strategies for adaptive problems (i.e., 
assessment items) on knowledge and skills development: Learners 
were randomly assigned to three groups. In the first adaptive 
group ALOSI prioritized a strategy of remediation – serving 
learners items on topics with the least evidence of mastery; in the 
second adaptive group ALOSI prioritized a strategy of continuity 
– that is learners would be more likely served items on similar 
topic in a sequence until mastery is demonstrated. The control 
group followed the pathways of the course as set out by the 
instructional designer, with no adaptive algorithms. All students in 
the course were administered a pre-test and a post-test, allowing a 
comparison of learning gains across three groups of students. We 
found that the implemented adaptivity in assessment, with 
emphasis on remediation is associated with a substantial increase 
in learning gains, while producing no big effect on the drop-out. 
Further research is needed to confirm these findings and explore 
additional possible effects and implications to course design. 
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1. INTRODUCTION 
Digital learning systems are considered adaptive when they can 
dynamically change the presentation of content to any user based 
on the user’s individual record of interactions, as opposed to 
simply sending users into different versions of the course based on 
preexisting information such as user’s demographic information, 
education level, or a test score. Conceptually, an adaptive learning 
system is a combination of two parts: an algorithm to dynamically 
assess each user’s current profile (the current state of knowledge, 
but potentially also affective factors, such as frustration level), 
and, based on this, a recommendation engine to decide what the 
user should see next. In this way, the system seeks to optimize 
individual user experience, based on each user’s prior actions, but 
also based on the actions of other users (e.g. to identify the course 
items that many others have found most useful in similar 
circumstances). Adaptive technologies build on decades of 
research in intelligent tutoring systems, psychometrics, cognitive 
learning theory and data science [2, 4, 10]. More specifically, 
Cognitive Tutors utilize knowledge tracing [9] to track knowledge 
acquisition and provide tailored instruction, by tracking 
performance on individual production rules in a cognitive model 
[3, 4, 11]. Extensions to this model have included estimating of 
the initial probability that the student knows a skill [5], estimating 
of the impact of help features on probability of acquisition [1], 
and integrating with models of item difficulty [6]. However, these 
approaches typically do not consider pacing and require 
significant content design workload in order to create learning and 
assessment content [2]. These limitations are critical in large-scale 
MOOC context. Pioneer studies on adaptive technologies in 
MOOCs indicated both technical feasibility and the educational 
promise [7, 8, 9]. Despite the promise of adaptive learning, there 
is a lack of evidence-based instructional design, transparency in 
many of the models and algorithms used to provide adaptive 
technology or a framework for rapid experimentation with 
different models. Harvard University partnered with Microsoft 
Learning to develop ALOSI (Adaptive Learning Open Source 
Initiative) provides open source adaptive learning technology and 
a common framework to measure learning gains and learner 
behavior. The key insights gained from the modeling and analysis 
work enables us to address the development of evidence-based 



 

 

guidelines for instructional design of future courses, and provides 
insights into our understanding of how people learn effectively. 
ALOSI uses Bayesian Knowledge tracing to both develop a 
predictive model of skills mastery for the learner, and improve the 
predictive attributes associated with the content.  The key features 
in ALOSI’s current adaptive framework include knowledge 
tracing and recommendation engine, while user modeling, 
feedback and recommendation of targeted learning materials are 
in development. The engine improves over time from the use of 
additional learner data and provides direct insights into the 
optimization processes (by contrast with commonly used 
commercial “black box” adaptive engines). Additionally, the 
architecture of the adaptive engine enables rapid experimentation 
with different recommendation strategies.  This pilot study 
measured the effects of adaptive pathways on learning gains and 
dropout rates using different tuning parameters in the adaptive 
engine against the instructional design learning experience. 

2. ALOSI ARCHITECTURE 
In order to operationalize ALOSI framework, we developed 

the Bridge for Adaptivity and the adaptive engine, two open 
source applications supporting a modular framework for 
implementing adaptive learning and experimentation that 
integrates several components: the Bridge for Adaptivity, an 
Adaptive Engine (such as the ALOSI adaptive engine), a Learning 
Management System (Learning Tools Interoperability - LTI 
consumer such as Canvas or edX), and a Content Source (for 
example, an LTI provider like Open edX). The Bridge for 
Adaptivity handles the integration of all system components to 
provide the adaptive learning experience, while the Adaptive 
Engine provides the adaptive strategy and is designed to be 
swapped in and out with compatible engines for experimentation 
and comparison. The diagram in Figure 1 describes the data 
passing in the system. 

 
Figure 1. ALOSI Architecture 

 

In this study, the Bridge for Adaptivity was used with the ALOSI 
adaptive engine to adaptively serve assessments from an Open 
edX platform instance in the Microsoft MOOC on edX. 

The user interface seen by a learner when they encounter an 
installed tool instance is that shown in Figure 2. Assessment items 
(problems) from the edX course are displayed one at a time in a 
center activity window, with a surrounding toolbar that provides 
features such as navigation, and a score display. Every problem-
checking event by the user sends the data to the adaptive engine, 

to update the mastery information real-time. Every “Next 
Question” event in an adaptive assessment sends to the engine a 
request for the next content item to be served to the user (this 
could a learning or an assessment content). The engine sends back 
the recommendation, which is accessed as an edX XBlock and 
loaded. 

 
Figure 2. Adaptive assessment user interface 

 

2.1 Adaptive Engine Details 
Our goal was to create a simple adaptive recommendation engine 
for an edX MOOC, capable of deciding what item to serve to a 
user next based on the user's history. We use a variety of Bayesian 
Knowledge Tracing (BKT) model to estimate the students' state. 
What makes our situation special is that, as we learned from the 
adaptive pilot and just generally from seeing MOOCs, 

1) Questions in the course differ widely in nature, and in 
particular in difficulty. Thus, we cannot assign the same values of 
guess, slip and transit probabilities to them, even if they are all 
tagged with the same knowledge component. 

2) Tagging is complicated: some of the questions are tagged with 
multiple knowledge components. 

3) In a self-paced MOOC environment, there is a need for a causal 
structure in the knowledge components: we should not serve to a 
user items tagged with a knowledge component, if the user has 
shown lack of knowledge of other knowledge components that are 
pre-requisite to that one. In the simplest case, it can be dictated by 
a simple ordered list (the natural order of learning the content of 
the course), but it could also be a detailed graph of pre-requisite 
relationships among knowledge components. 

4) In a MOOC, the number of students is high, so we can afford to 
define a model with a large number of parameters and optimize 
them based on the student interaction data. 

Conceptually, our engine consists of two blocks: knowledge 
tracing and the recommendation engine, which uses the output of 
knowledge tracing as an input. 



 

 

Knowledge Tracing 
Let there be 𝑄 questions in the course (𝑞 = 1,2…𝑄), tagged with 
𝑁 knowledge components (𝑖 = 1,2…𝑁), or KCs for short. We 
introduce matrices of guess, slip and transfer probabilities of the 
questions: 𝑝!"

!"#$$, 𝑝!"
!"#$, 𝑝!"!"#$%, which are the generalizations of 

the usual guess slip and transfer parameters of BKT [6]. We do 
not assume these parameters to the same for all questions, due to 
the item diversity. 
We assume that the mastery of each KC by each course user is a 
binary latent variable – the user either has learned it or not – and 
we update the mastery matrix 𝑝, where the element 𝑝!" is the 
currently estimated probability that the user 𝑢 has the mastery of 
the KC 𝑖. We define the mastery threshold 𝑝∗ ∈ [0,1], and if 
𝑝!" ≥ 𝑝∗, we say that the mastery of 𝑖 by the user 𝑢 is sufficiently 
certain and no longer needs verification.  We initialize the mastery 
probability matrix 𝑝 = 𝑝(!) (user' prior knowledge), after which, 
when a user submits an answer to the question, it gets a 
correctness value (score) 𝐶!

(!) ∈ [0,1] and we update the mastery 
probability of each KC (i.e. this user's row of the matrix 𝑝). We 
also characterize 
The Bayesian updating is easier to write in terms of odds, or even 
logarithmic odds, rather than the probability p:  

𝒪!" =
𝑝!"

1 − 𝑝!"
, 𝐿!" = log𝒪!" ,                𝐿∗ = log

𝑝∗

1 − 𝑝∗
                        (1.) 

So we will translate the transit, guess and slip probabilities into 
odds as well: 𝑜!"

!"#$$ = 𝑝!"
!"#$$/(1 − 𝑝!"

!"#$$) etc, and introduce the 
likelihood ratios for the case of incorrect (0) and correct (1) 
answer: 

𝑥!"! =
𝑝!"
!"#$

1 − 𝑝!"
!"#$$ , 𝑥!"! =

1 − 𝑝!"
!"#$

𝑝!"
!"#$$                         (2.) 

These matrices encode the relevance of a question 𝑞 to a KC 𝑖. If 
the problem is irrelevant to a KC, the probability of correct or 
incorrect score should be independent of that KC. This will be the 
case if 𝑝!"

!"#$ = 1 − 𝑝!"
!"#$$, in which case 𝑥!"! = 𝑥!"! = 1. We 

propose to define the relevance matrix, which is essentially a 
generalization of tagging, as a sum of logarithmic odds of non-
guessing and non-slipping: 

𝑘!" = log 𝑥!"! − log 𝑥!"! = − log 𝑜!"
!"#$$ − log 𝑜!"

!"#$                         (3.) 

This can be viewed as a generalization of tagging items with KCs. 
While the tagging matrix is binary (a KC is either linked to a 
question or not), the relevance matrix shows the weight of each 
link: how much of an evidence for the KC mastery the question 
provides. The multiplicative factor earned by the mastery odds is: 

𝑥!" = 𝑥!"!
𝑥!"!

𝑥!"
!

!!
(!)

                        (4.) 

For binary (0 or 1) scores, this is just another way of saying that 
the factor should equal 𝑥!"!  or 𝑥!"! . But we can also interpolate for 
fractional scores, and this is what Eq. 4 does. Exactly how we 
interpolate between these for fractional scores is a matter of 
choice. For instance, an alternative definition could be a linear 
interpolation 𝑥!" = 𝑥!"! + 𝐶!

! (𝑥!"! − 𝑥!"! ). We settled on the 
multiplicative interpolation by looking at the location of the 
"borderline" score, for which 𝑥!" = 1, reresenting the boundary 
between correctness and incorrectness. For instance, as a back-of-
the-envelope estimate, let the guess and slip probabilities have 

equal values (typically, they are not too different). In Eq. 1, this 
sets the borderline score at a reasonable 0.5, whereas in case of 
linear interpolation the borderline score in such a situation equals 
the slip (= guess) probability, which is likely too low. 

The posterior odds, with the evidence of the submitted problem, 
become 𝒪!" → 𝒪!"𝑥!". Additionally, we modify the mastery odds 
due to transfer of knowledge, so the full update procedure is: 

𝒪!" → 𝑜!"!"#$%   +    𝑜!"!"#$% + 1 𝒪!"𝑥!"                         (5.) 

This is a type of Bayesian Knowledge Tracing. The main 
modification is that we deliberately formulated it that we 
formulate it in such a way that there is no explicit requirement to 
tag each question with only one KC. If a problem is tagged with 
several KCs (𝑘!" > 0 for more than one value 𝑖. We essentially 
view the problem as a collection of sub-problems, each tagged 
with a single KC. This is our proposed the generalization of BKT 
to multiple tagging. The predicted odds of correct answer are 
found as 

𝒪!"
!"#$ =

𝒪!" 1 − 𝑝!"
!"#$ + 𝑝!"

!"#$$

𝒪!"𝑝!"
!"#$ + 1 − 𝑝!"

!"#$$
!

                        (6.) 

which is to say that we take the ratio of the probability that each 
sub-problem is answered correctly to the probability that each 
sub-problem is answered incorrectly (since we must remove from 
the ensemble the possibilities of correct answer on some but not 
all sub-problems). 

The outlined procedure is multiplicative in nature. An obvious 
idea would be to replace it with an additive one by working with 
logarithmic odds 𝐿!" (which we do, in fact, in the 
recommendation part of the engine). It would be clearly preferable 
from the computational point of view in the knowledge-tracing 
part as well, if it was not for the knowledge-transfer step: in the 
additive formulation this step would involve an exponentiation 
and a taking a logarithm. 

For terminological simplicity we referred to the content items as 
questions. However, the model can accommodate instructional 
items as well, e.g. videos or text. We can adopt a rule that, if an 
item 𝑞 is instructional, the outcome of user's interaction with it is 
always "correct". A way to think of it is to imagine that 𝑞 includes 
an assessment part of trivial difficulty. The slip probabilities 
𝑝!"
!"#$ = 0, the guess probabilities now have the meaning of the 

probability of not learning an KC from the item, and so we set 
them to 𝑝!"

!"#$$ = 1 − 𝑝!"!"#$%.  

If the matrix 𝑝 or other parameter matrices contain zeros or ones it 
is possible to encounter 0/0 indeterminacies. One way to preclude 
these is adopt a small cutoff, e.g. we can set 𝜖 = 10!!", and 
coerce all elements of the parameter matrices 𝑝!"#$, 𝑝!"#$$, 𝑝!"#$%, 
as well as the initial mastery probability 𝑝(!), to the interval 
𝜖, 1 − 𝜖 . 

 
Learning parameters of knowledge tracing 
We will rely on a way to optimize our BKT parameters, inspired 
by the "empirical probabilities" method of [7]. 

At regular points in time, when we decide to run the optimization, 
suppose that the items submitted by a user 𝑢 are {𝑞!

! } (𝑗 =
1, . . . 𝐽(!)), indexed in chronological order, and let the correctness 
scores be 𝐶!

(!). We denote 𝐾!"
(!) this student's latent mastery of a 



 

 

KC 𝑖 just before submitting the item 𝑞!
(!). Assuming that there is 

no forgetting, the knowledge is a non-decreasing function with 
values 0 and 1, so it is characterized simply by the position of the 
unit step: for j from 1 to some 𝑛! knowledge is 0 and from there 
onward it is 1. We need to find which 𝑛! gives the highest 
accuracy of predicting correctness from knowledge. Once this is 
done, the knowledge is not a latent variable anymore, and we can 
estimate guess, slip and transfer probabilities by frequencies of 
observations. 

The generalized number of errors on predicting the outcome based 
on mastery of a particular knowledge component are: 

𝐸!
(!)(𝑛) = − 𝐶!

(!) log 𝑜!!!
!"#$$

!

!!!

− (1 − 𝐶!
! ) log 𝑜!!!

!"#$
!(!)

!!!!!

      (7.) 

where 𝑛 ∈ [0, 𝐽(!)] and we adopt the convention that if the lower 
limit of a sum is greater than the upper limit, the sum is 0. We set 
the knowledge step location for each KC: 𝑛! = argmin(𝐸!

(!)), and 
construct the step-function 𝐾!"

(!) using it. If there are multiple 
equal minima, and hence multiple 𝑛!, we take the average of the 
corresponding multiple step-functions (because of this, knowledge 
may now have fractional value). Note that, if user's problems are 
irrelevant for an KC, we will find a steadily growing knowledge 
of that KC. This is not bad, however, since for each KC we will 
average only over the users who experienced some relevant 
problems. Namely, we can define the sets of users 

𝒰! = {∀𝑢:   𝑘!!! !

! !

!!!

> 𝜂} 

𝒰!" = {∀𝑢:   𝑘!!! !
𝟏(𝑞!

(!) = 𝑞)
! !

!!!

> 𝜂} 

where 𝜂 ≥ 0 is a constant we set as a measure of how much total 
relevance of a KC is enough for the user to be included into the 
ensemble for estimating the parameters of that KC. As the 
simplest choice, in this implementation we set 𝜂 = 0. 

Now we can estimate the BKT parameter matrices from the user 
data: 

𝑝!!!
! =

𝐾!!
(!)

!∈𝒰!
1!∈𝒰!
                        (8.) 

 (same prior knowledge for all users 𝑢′). 

𝑝!"
!"#$$ =

1 − 𝐾!"
!!(!)

!!! 𝐶!
(!)𝟏(𝑞!

(!) = 𝑞)!∈𝒰!"

1 − 𝐾!"
!!(!)

!!! 𝟏(𝑞!
(!) = 𝑞)!∈𝒰!"

                (9.) 

𝑝!"
!"#$ =

𝐾!"
! 1 − 𝐶!

!!(!)
!!! 𝟏(𝑞!

(!) = 𝑞)!∈𝒰!"

𝐾!"
!!(!)

!!! 𝟏(𝑞!
(!) = 𝑞)!∈𝒰!"

                (10.) 

𝑝!"!"#$% =
1 − 𝐾!"

!!(!)!!
!!! 𝐾!,!!!

! 𝟏(𝑞!
(!) = 𝑞)!∈𝒰!"

1 − 𝐾!"
!!(!)!!

!!! 𝟏(𝑞!
(!) = 𝑞)!∈𝒰!"

          (11.) 

 

Here again, we adopt the convention that if the lower limit of a 
sum is greater than the upper limit, the sum is 0 (this happens 
when 𝐽(!) is 0 or 1). The value of the denominator in each of these 
expressions is a measure of how much student information we 

have for estimating the probability. In case there is no data, the 
expression becomes a 0/0. We should not want to update a 
probability in this case. Moreover, we imposed a threshold 
𝑀 = 20 and did not update a particular matrix element if the 
denominator in the corresponding equation is less than 𝑀. 
Likewise, we did not update if the calculated value was 
degenerate, e.g. a guess probability and a slip probability add up 
to more than 1. 

The updated prior knowledge values 𝑝(!) will be used for all users 
yet to come to the course, but also for the existing users for those 
knowledge components that they have not yet been exposed to. 
 
Recommendation engine 
The strategy we use for recommending the next item is a weighted 
combination of a number of sub-strategies. Each sub-strategy 
comes in with an importance weight (the vector of these weights 
is a governing parameter of the adaptive engine).  

Let us first define the matrix of pre-requisite readiness. The pre-
requisite relationships among the KCs are naturally visualized as a 
directed acyclic graph, and are stored as an 𝑁×𝑁 matrix 𝑤 of pre-
requisite strengths, 𝑤!" representing the strength of the graph edge 
(KC 𝑗 is a pre-requisite for KC 𝑖). We define this strength to be on 
the scale from 0 to 1. If the SME provided no pre-requisite 
relations form the KCs, 𝑤 a zero matrix. 

The pre-requisite readiness is defined for each KC and for each 
user as a matrix: 

𝑟!" = 𝑤!"min 0, 𝐿!" − 𝐿∗
!

!!!

                        (12.) 

An element 𝑟!" has value 0 if the user has sufficiently mastered all 
KCs pre-requisite for the KC 𝑖, and less than 0 if the mastery 
probabilities for some pre-requisites are not yet certain. If the pre-
requisite strength 𝑤!" is weaker, it enters 𝑟!" with a smaller 
weight, allowing less certain mastery of less important pre-
requisites. If all the pre-requisites are ascertained, 𝑟!" = 0, 
otherwise it is negative. We can deviate from this slightly and 
introduce a forgiveness parameter 𝑟∗ ≥ 0  , so that a user 𝑢 is 
sufficiently ready for learning a KC 𝑖 if 𝑟!! + 𝑟∗ ≥ 0. 
To recommend the next question for a student, we subset the 
relevance matrix 𝑘!" to only those questions (matrix rows) that 
belong to the adaptive module where the user 𝑢 is and that the 
user has not seen yet. Thus, we obtain a user specific matrix 𝑘!"

(!). 
We define the non-negative user-specific vectors of 
"remediation", "continuity", "difficulty matching", and 
"readiness" (in terms of difficulty level of the problem 𝑑! ∈
𝜖, 1 − 𝜖 ): 

𝑅!
(!) = 𝑘!"

(!)max 0, 𝐿∗ − 𝐿!"

!

!!!

                        (13.) 

𝐶!
(!) = 𝑘!"

(!)
!

!!!

𝑘!!"#$,!                       (14.) 

𝐷!
(!) = − 𝑘!"

! 𝐿 − log
𝑑!

1 − 𝑑!

!

!!!

                        (15.) 



 

 

𝑃!
(!) = 𝑘!"

(!)min 0, 𝑟!" + 𝑟∗
!

!!!

                        (16.) 

where 𝑞!"#$ is the last item the user saw. 

These expressions formulate the four sub-strategies of our 
recommendation engine. The vectors are the ratings of all 
potential items by the sub-strategies. The first sub-strategy, 
“remediation”, rates higher those items on whose KCs the user’s 
mastery is currently low. The second, “continuity”, rates higher 
items tagged most similarly to the last seen item. The third favors 
items with the difficulty level that matches the mastery level and 
the fourth tries to avoid serving a question if the user has not 
mastered the KCs that are pre-requisite to the KCs of that 
question. 

More competing subs-strategies can be added to the list at will, 
but in this implementation we used these four. We introduce a 
vector of sub-strategy weights: 𝑊 = (𝑊! ,𝑊! ,𝑊! ,𝑊!), defined up 
to normalization. So that the overall rating of the available items 
is the weighted sum: 

𝑆!
(!) = 𝑊!𝑅!

(!) +𝑊!𝐶!
(!) +𝑊!𝐷!

(!) +𝑊!𝑃!
(!)                        (17.) 

The item 𝑞 that maximizes 𝑆!
(!) will be served to the user 𝑢. 

The serving stops naturally when we exhausted the available 
questions (the matrix 𝑘(!) has no rows). Additionally, we may 
adopt a “stop on mastery” policy and stop serving if 𝑅!

(!) = 0 for 
all 𝑞, which means that the user has reached the mastery threshold 
𝑝∗ on all KCs relevant for the available pool of items. 
 

2.2 Method 
 

Adaptive functionality has been deployed in Microsoft MOOC on 
edX “Essential Statistics for Data Analysis Using Excel”. The 
instructional design team significantly enhanced the assessment 
scope, and included over 35 knowledge components and 400 
assessment items tagged to those knowledge components. Our 
experimental design randomly assigned learners in the course to 
three independent groups: in the first adaptive group ALOSI 
prioritized a strategy of remediation – serving learners items on 
topics with the least evidence of mastery (Group A); in the second 
adaptive group ALOSI prioritized a strategy of continuity – that is 
learners would be more likely served items on similar topic in a 
sequence until mastery is demonstrated (group B); the control 
group followed the pathways of the course as set out by the 
instructional designer, with no adaptive algorithms (Group C).  
Thus, groups A and B of the students experienced two varieties of 
the adaptive engine.  
 

The difference was in the recommendation sub-strategy weights. 
For group A, the weight of remediation was set to 2, and that of 
continuity to 1. For group B these values were reversed. The 
weights of the remaining two sub-strategies were the same for 
both groups: 1 for pre-requisite readiness and 0.5 for difficulty 
matching. The mastery threshold L* was set to 2.2 (corresponding 
to p* about 0.9. The pre-requisite forgiveness r* was set to 0. The 
serving policy “stop on mastery” was not used: as long as a user 
requested more adaptive questions, they were served until the 
available pool was exhausted.  
 

 
 

Note that the continuity sub-strategy does not use the answer 
correctness. Therefore, Group B experienced less variability in 
serving order than Group A (And Group C experience none at all). 
Furthermore, at the request of the course team, we suspended 
adaptive serving in the beginning of two assessment modules: the 
pre-test and the post-test. In these, for Groups A and B, the first 
34 or 35 (respectively) items were served in a fixed sequence 
(same for everyone), and only afterwards the serving order 
became adaptive. 
It should be noted that the approach in the first adaptive group 
was the most different from the conventional non-adaptive 
learning experience of the third group, and the second adaptive 
group occupies the intermediate position. Moreover, in the 
adaptive groups the learners were working on one item at a time, 
while in the control group the items were presented in the 
conventional edX approach – several items at once. 

From the course SME we obtained the information about the 
assessment items: a list of KCs, a list of pre-requisite relations 
among them, tagging of items with KCs, difficulty level of each 
item and basic estimates of the guess, slip and transfer 
probabilities. These were used as cold guesses at the start, and in 
the progress of the course these values were updated with those 
learned from the data. The numerical estimates (e.g. the difficulty 
level or the connection strength between two KCs) were estimated 
by the SME using a 3-level scale (weak/medium/strong), which 
we then converted to numbers for the use in the engine. 

Although our engine is capable of operating with multiple 
tagging, in this course it did not happen: each item was tagged 
with only one KC. 
 

3. Findings 
All students in the course were administered a pre-test and a post-
test, allowing a comparison of learning gains across three groups 
of students. For the adaptive groups A and B, the first 34 
problems in the pre-test and the first 35 in the post-test were 
served non-adaptively: their sequence was fixed, and only the 
remainder of problems in both tests was served adaptively. Thus, 
we use the average problem score of only these fixed parts of the 
tests for the comparison, to ensure that all students are compared 
on equal footing. For Group C we simply use the entire pre-test 
and post-test that this group received. 

We observe no substantial differences across the groups in the 
average problem score in the pre-test, confirming the assumption 
that initially the composition of the three groups is comparable1. If 
anything, group A was at a slight disadvantage initially. 

The learning gains are observed as the difference between the 
average problem score in the post-test and in the pre-test. It 
appears that group A experienced the greatest learning gain 
(ES=0.641). Group B, whose version of adaptivity was weaker 
(continuity was emphasized rather than remediation), has lower 
learning gains (ES=0.542), and the control Group C had still less 
(ES=0.535). 

                                                                    
1 Everywhere in this paper, by p value we mean the p-value from the two-
tailed t-test, and by the effect size (ES) we mean Cohen’s d. 



 

 

 
Table 1. Learning gains across the three groups 

 

 
We estimate standard error of the post-test participation rates with 
the help of binomial distribution as slightly over 1% in all three 
groups, which means that the differences between the post-test 
participation are insignificant.  

In the learning gains analysis above we included all users who 
submitted at least one question in a pre-test and in a post-test, i.e. 
students who are both pre-testers and post-testers. So the question 
remains how many of the pre-testers dropped out without reaching 
the post-test. 
We further investigate the effect of the experimental groups on 
learning gains: how much of it was due to the simple fact that 
experimental users had access to many more questions in the 
learning modules than the control users, and therefore had more 
chances to practice their knowledge? The number of questions in 
the fixed sequences in the pre-test and post-test for the 
experimental groups was 34 and 35, respectively. The number of 
questions in the pre-test and the post-test for the Control group 
was 29 and 30 respectively. We have 793 
(Remediation/Continuity/Control=238/263/292) users who 
submitted at least one question in the pre-test and at least one 
question in the post-test, but restricting the analysis to those who 
submitted the minimum of 29 pre-test and 30 post-test questions 
(the numbers of questions from the Control group). As a result, 
the number of users left is 448 
(Remediation/Continuity/Control=127/154/167). Defining the 
learning gain as the difference between a user's post-test mean 
score and pre-test mean score, we train on these users a linear 
model where the outcome is the learning gain and the explanatory 
variables are the pre-test mean score, the experimental group, and 
the number of questions submitted in the modules 1-5 of the 
course. The adjusted R-squared of the model is 0.24. As a result, 
belonging to group A (“remediation”) increases the gain by 0.057 
(p=0.03) compared to the control group C; belonging to group B 
(“continuity”) has no significant effect (p=0.54). Furthermore, 
the number of problems turns out to have no statistically 
significant effect on the learning gain (p=0.65), suggesting that 
the benefit of remediation adaptivity is not explained as simply 
the benefit of practicing with more questions. 
 

 
Figure 3. Participation rates by course module 

In Figure 3, only the pre-testers are included, so the participation 
in the pre-test is by definition 100% in any group. The biggest 
drop-out occurs early on in the course, which is typical for any 
MOOC. Also, there is a small number of learners who skip the 
assessment in some modules but go to the post-test - this is 
manifest from the fact that the participation rate in the post-test is 
higher than in module 5. The numbers of learners in this graph are 
A/B/C=1245/1281/1415. The participation rates in the post-test 
are A/B/C=19.1/20.5/20.6% We estimate standard error of the 
post-test participation rates with the help of binomial distribution 
as slightly over 1% in all three groups, which means that the 
differences between the post-test participation are insignificant. 
 
We conclude that the implemented adaptivity in assessment with 
emphasis on remediation (Group A) is associated with a 
substantial increase in learning gains, while producing no big 
effect on the drop-out. 
 
The knowledge tracing, which occurs in our engine, allows 
determining the demonstrated mastery probability for any 
knowledge component and for any learner after any submit event. 
This opens up the possibility of visualizing the learning curve, 
rather than simply relying on the difference between pre-test and 
post-test scores. Given that we have so many knowledge 
components, we prefer to aggregate them in groups for the 
purpose of visualization. Our approach is as follows. Within any 
assessment module, we average the mastery probabilities of any 
user across all the knowledge components that are represented in 
the tagging of the problems in that module. In this way, we create 
for each user an overall mastery level in a module. Then we can 
consider group averages of this overall mastery level. In the figure 
below we plot these group averages of mastery vs. the number of 
problems tried by a user in the module. 
 
 

 

Pre-test Group A Group B Group C 

Pre-test mean score 0.491 0.520 0.510 
Post-test mean score 0.782 0.768 0.758 
Effect size of 
learning gains 

0.641 0.542 0.535 



 

 

 
Figure 4. Learner curves by Group, by course module 

One noticeable feature is that in many assessment modules the 
learning curves of adaptive groups are smoother. As the plots 
show, group C often had a smaller item bank than the adaptive 
groups, and with the exception of the pre-test, almost all users in 
this group submitted almost all problems (in the table below we 
show the mean percentages of submitted problems).  

Table 1. Average percentage of problems submitted 

 
Therefore, the sharp twists in the Group C learning curves are not 
explained away by population stratification. Adaptivity produces a 
smoother learning experience. 

4. CONTRIBUTIONS 
Our experimentation with adaptive assessments provided initial 
evidence on the effects of adaptivity in MOOCs on learning gains 
and dropout rates. Furthermore, the architecture of the Bridge for 
Adaptivity and the adaptive engine developed in this project 
enables rapid experimentation with different recommendation 
strategies in the future. In this study, adaptivity was implemented 
on Multiple-Choice assessment problems. There appear to be 
extensive opportunities to expand adaptive engine to a broad 
range of assessment item types and enable adaptivity in learning 
content (e.g., videos, readings, simulations) in MOOCs. Given the 

structure of many MOOCs, more integration between learning 
content and assessment could provide an adaptive experience that 
would guide learners to content that could improve their 
understanding based on how they perform on integrated 
assessments. Additional factors could be included to provide a 
more personalized learning experience. We can conceive an 
adaptive engine that decides what item to serve next based not just 
on the mastery but also on career interests and behavioral patterns 
interpreted as boredom or frustration. 

In addition, we anticipate expanding this adaptive learning system 
to work with other LTI-compliant Learning Management Systems 
on a large scale.  
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